DCA6107 FUNDAMENTALS OF MATHEMATICS

198.00

Scroll down for Match your  questions with Sample

Note- Students need to make Changes before uploading for Avoid similarity issue in turnitin.

Another Option

UNIQUE ASSIGNMENT

0-20% Similarity in turnitin

Price is 700 per assignment

Unique assignment buy via WhatsApp   8755555879

Quick Checkout

Description

  1. SESSION NOVEMBER 2024
    PROGRAM MCA
    SEMESTER I
    COURSE CODE & NAME DCA6107 FUNDAMENTALS OF MATHEMATICS
       
       

     

     

    Set-I

     

    1. Find the derivative of  using limits

    Ans 1.

    The derivative using limits is defined as:

    For :

     

    Its Half solved only

    Buy Complete from our online store

     

    https://smuassignment.in/online-store/

     

    MUJ Fully solved assignment available for session July-Aug 2024.

     

    Lowest price guarantee with quality.

    Charges INR 198 only per assignment. For more information you can get via mail or Whats app also

    Mail id is aapkieducation@gmail.com

     

    Our website www.smuassignment.in

    After mail, we will reply you instant or maximum

    1 hour.

    Otherwise you can also contact on our

    whatsapp no 8791490301.

     

    2. Evaluate

    (i)

    Ans 2.

    Step 1: Simplify the function

     

     

    (ii)

    Step 1: Expand the function

     

    3. Find  and  for :

    Given function:

     

    Step 1: Partial derivative with respect to  ()

    Treat  as a constant

     

    SET-II

     

     

    4. Find    and  where  and  .

    Ans 4. Find  and :

    Given vectors:

     

     

    5. Express 1 Radian into the degree measurement

    Ans 5.

    To convert radians into degrees, use the formula:

    Step 1: Approximate the value of

     

     

    1. Find their modulus and amplitude of the following

    (i)                                             (ii).     

    Ans 6.

    Find the modulus and amplitude of the following

    (i)

    Step 1: Modulus

    The modulus of a complex number  is given by:

    Here, , so  and .